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Abstract. The atomic transition probabilities are calculated for individual lines between some quartet
terms of 3p → 4d and 3p → 5d transition arrays using weakest bound electron potential model theory
(WBEPMT). In the determination of relevant parameters which are needed for calculation of transition
probabilities, we employed numerical non-relativistic Hartree-Fock wave functions for expectation values of
radius in both ground and excited states unlike to NCA method used on traditional WBEPMT procedure.
We have obtained very good agreement between our results and the accepted values taken from NIST.

PACS. 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding – 32.70.Cs
Oscillator strengths, lifetimes, transition moments

1 Introduction

The determination of physical properties of nitrogen are
very important in both astrophysics and atmosphere
science. Absorption lines observed in sun light related
to the transitions between fine structure levels may
contain very important information about far stars in
galaxy. On the other hand, the amount of nitrogen at
stars can be determined depending on the atomic tran-
sition probabilities [1,2]. One of the most important
parameters in the atomic spectroscopy is the transi-
tion probability. The obtained values for the transition
probabilities include some important information about
the selection of relevant transitions, temperature and
atomic concentrations. Many studies have been carried
out to determine the transition probabilities and oscil-
lator strengths theoretically in nitrogen atom. Beck and
Nicolaides have calculated the oscillator strengths for the
atomic nitrogen and oxygen. They applied a combina-
tion of the Multi-Configurational Hartree-Fock (MCHF)
method with Variational Configuration-Interaction (VCI)
calculations [3]. Fawcet has calculated oscillator strengths
for N II using relativistic HF technique [4]. Hofsaess
has calculated term energy levels and oscillator strengths
for nitrogen by the Thomas-Fermi-Hartree-Fock method
(TFHF) [5]. Suskin and Weiss have studied the correla-
tion effects within quartet states of nitrogen using a CI
expansion of approximately 3000 configurations [6]. Bell
and Berrington have calculated oscillator strengths and
photo-ionization cross-sections for atomic nitrogen using
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R-Matrix method in the LS coupling [7]. Hibbert et al.
have calculated the transition probabilities for individual
lines using the configuration-interaction version 3 (CIV3)
code based on configuration interaction wave functions [8].
Tong et al. have calculated the oscillator strengths of
electric-dipole allowed transitions among the low-lying
states of quartet symmetry in atomic nitrogen using
MCHF procedure [9]. Energy levels and transitions in N II
have been studied by Fischer using MCHF approxima-
tion [10]. Bell et al. have calculated the transition prob-
abilities for transitions between the some fine structure
levels of singly ionized nitrogen using configuration inter-
action wave functions and the CIV3 code [11]. Robinson
and Hibbert have studied the transitions from the ground
state to the four lowest 4P states with the CIVNON code
using a restricted the non-orthogonal representation for
both the lower and upper states [12]. Zheng-Wang and
Zheng et al. have calculated resonance transition prob-
abilities for transitions between several levels and life-
times for some excited states using WBEPMT on the
atomic and ionic nitrogen [13,14]. The results obtained
from Breit-Pauli approximation for energy levels, lifetimes
and Landé g(J) factors have been determined for all lev-
els up to 2p(2)3d in the nitrogen-like sequence (Z = 7–17)
and 2p(3)3d in the oxygen-like sequence (Z = 8–20) by
Tachiev and Fischer [15].

In this study, we employed WBEPM theory for the
calculations of transition probabilities of some excited
p-d transitions in atomic nitrogen. This theory uses the
observed binding energy and expectation values of ra-
dius to find the effective values of nuclear charge, princi-
pal quantum number and orbital quantum number. These



326 The European Physical Journal D

parameters then define the radial function of the weak-
est bound electron. This method has a simple calculation
procedure. Moreover, the determination of Z∗, n∗ and l∗
parameters is sufficient for the calculation of transition
probabilities. In this work, we have used the numerical
non-relativistic Hartree-Fock wave functions for determi-
nation of relevant parameters and then atomic transition
probabilities calculated in framework of WBEPM theory.

2 Theory and calculation procedure

The weakest bound electron potential model theory
(WBEPMT) has been development by Zheng [16]. He was
suggested a new model potential to describe the electronic
motion in a multi-electron atomic or ionic systems and
separated into two groups of electrons to be the weakest
bound electron and non-weakest bound electrons in given
a system. As viewed from excitation or ionization proce-
dures, the weakest bound electron in an atom or ion differs
from other electrons in the behavior. The weakest bound
electron (WBE) in many-electron systems is that electron
most weakly bound to the system compared to the other
electrons in the system. Some atomic or ionic properties in
a multi-electron systems such as transition, excitation and
ionization may be referred to weakest bound electron’s be-
havior. Therefore, the weakest bound electron in a given
atomic or ionic system is also the electron which can most
easily be excited or ionized. Accurate treatment of WBE
can obtained accurate information about these properties.
By the separation of the electrons in a given system, com-
plex many-electron problem can be simplified as the single
electron problem and so can be solve easily [17–20].

According to WBEPM theory, the Schrödinger equa-
tion of the weakest bound electron in under non-
relativistic conditions (in a.u.) given as [23]

−1
2
∇2ψi + V (ri)ψi = εiψi (1)

V (ri) = −Z
∗

ri
+

[d(d+ 1) + 2dl]
2r2i

. (2)

Here V (ri) is potential function produced by the non-
weakest bound electrons and nucleus. Screening by the
non-weakest bound electron is not complete because of
the orbital penetration effect of the weakest bound elec-
tron. The nuclear charge acting on the WBE would be an
effective nuclear charge Z∗ which is non-integer. However,
l is the angular momentum quantum number of the weak-
est bound electron and d is an undetermined parameter.
Moreover, the principal quantum number n and angular
quantum number l of the weakest bound electron replaced
by the effective principal quantum number n∗ and effec-
tive angular momentum quantum number l∗. In WBEPM
theory, weakest bound electron is move in a central po-
tential. Potential function can be divided into two parts.
The first term is Coulomb potential related to the pene-
tration and screening effect and second term is the dipole
potential produced by polarization effect. Using this new

model potential, the electronic radial wave function can
be expressed by means of general Laguerre polynomial
with parameters determined from experimental ionization
data [20].

The wave function of the weakest bound electron can
be given as

ψi (ri, θi, ϕi) = Rn∗l∗(ri) Yl,m(θi,ϕi) (3)

where, Yl,m(θi,ϕi) is complex spherical harmonics and
Rn∗l∗(ri) is radial parts of wave function. Substituting
this potential function into the Schrödinger equation of
the weakest bound electron and solving the radial equa-
tion by employing some transformations, the radial wave
function of the weakest bound electron [19,23] can be ob-
tained to be

Rn∗l∗(r) = C exp
(
−Z

∗r
n∗

)
rl∗L2l∗+1

n∗−l∗−1

(
2Z∗r
n∗

)
(4)

where L2l∗+1
n∗−l∗−1(2Z

∗r/n∗) is the general Laguerre polyno-
mial and C is normalization constant given to be

C =
(

2Z∗

n∗

)l∗+3/2 [
2n∗

(n∗ − l∗ − 1)!
Γ (n∗ − l∗ + 1)

]−1/2

.

(5)
The energy eigenvalue of the weakest bound electron
given as

ε = − Z∗2

2n∗2 . (6)

Here, n∗ and l∗ parameters have been given to be

l∗ = l + d (7)
n∗ = n+ d. (8)

The negative value of the energy ε in equation (6) may
be set approximately equal to the binding energy of the
spectroscopic energy level of the WBE,

E = ε = − Z∗2

2n∗2 (9)

where, E can be obtained from the experimental excita-
tion spectral energy level Espec and spectral limit value
Elim it,

E = Elim it − Espec. (10)

In WBEPM theory, radial transition integral has been de-
termined using radial wave function given in equation (4)
and integral formula of two generalized Laguerre polyno-
mials given to be

∞∫
0

tλ e− t Lµ
m (t)Lµ′

m′(t) dt = (−1)m+m′
Γ(λ+ 1)

×
∑

k

(
λ − µ
m− k

) (
λ − µ′
m′ − k

) (
λ+ k
k

)
(11)
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〈ni, li| rk |nf , lf 〉 =

∞∫
0
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(12)

where, the quantities under the integral sign are in the
form of t = (Z∗

1/n
∗
1 + Z∗

2/n
∗
2)r,

λ = l∗1 + l∗2 + k + 2, m = n1 − l1 − 1,

m′ = n2 − l2 − 1, µ = 2l∗1 + 1, µ′ = 2l∗2 + 1.

Then, for a transition from the level (ni, li) to the level
(nf , lf ), the expectation value of rk or radial transition
integral for k = 1 is given to be [19,23–26]

see equation (12) above

where S = min{n∗
f − l∗f − 1 −m1, n

∗
i − l∗i − 1 −m2} and

k > −l∗f − l∗i − 3 if k = 1 and f = i, expectation value of
the weakest bound electron i can be written

〈r〉 =
3n∗2 − l∗(l∗ + 1)

2Z∗ . (13)

In order to calculate ε, R and other properties of the
WBE, the parameters Z∗ and d are must be known
and so the equations (9) and (13) must be solved to-
gether. It is well-known that some difficulties in obtain-
ing the parameters directly from theory are still present.
Therefore, Zheng suggest that the values of Espec can
be taken from the experimental atomic data in the lit-
erature and expectation value of radius of the weakest
bound electron 〈r〉 can be obtained by many theoret-
ical methods such as Numerical Coulomb Approxima-
tion (NCA), Multiconfigurational Hartree-Fock (MCHF)
method, Roothaan-Hartree-Fock (RHF) Method, Hartree-
Kohn-Sham Method (HKS), time-dependent Hartree-
Fock (TDHF) etc. [20,22]. In this study, expectation
values of radius of the weakest bound electron for all lev-
els have determined from Hartree-Fock Method. We em-
ployed HF96 computer program based on the numerical
non-relativistic wave functions. In this package program,
numerical non-relativistic Hartree-Fock wave functions are
determined for atoms. These wave functions are used to
predict a variety of atomic parameters as Slater and mag-
netic integrals, spin-orbit parameters, electron density at
the nucleus and transition integrals [27,28].

Electric dipole transition probability from a state to
other has been given as following

A =
64π4e2a0

2(EJ′ − Ej)3

3h(2J ′ + 1)
S. (14)

Here, (Ej − Ei) is the energy difference between relevant
levels and S is the electric dipole line strength [29]. Line
strength is determined according to the coupling schemes
and the transition types in atomic or ionic systems. The
text book given by Cowan [29] has presented in details
how the line strength can be calculated due to considered
coupling schemes and for different type transitions.

According to the weakest bound electron potential
model theory, in the calculation of transition probabilities
for atomic nitrogen, the determination of Z∗ and d pa-
rameters is sufficient. In the determination of these pa-
rameters, equations (9) and (13) solved together. Energy
values used in equation (9) are taken from experimen-
tal values in the literature [30] and expectation values of
radius for ground and excited levels are calculated using
Hartree-Fock method [27,28]. The parameters required for
the calculations of the transition probabilities have been
determined using the procedure mentioned above and pre-
sented in Table 1.

3 Results and conclusions

We have calculated atomic transition probabilities for in-
dividual lines between some quartet terms of 3p → 4d
and 3p → 5d transition arrays using WBEPM the-
ory in nitrogen atom. We employed numerical non-
relativistic Hartree-Fock wave functions for expectation
values of radius in both ground and excited states which
is used in determination of relevant parameters. Avail-
able experimental and theoretical data are quite limited
for this spectrum. On the other hand these data have not
been sensitively tested for both the multiplet values and
for the individual lines. Therefore, the results obtained
from our calculation have been compared to only extensive
database of transition probabilities taken from NIST [32].
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Table 1. The parameters for the calculations of transition probabilities.

Level n l d Z∗ 〈r〉 Energy (cm−1)

1s22s22p2 (3P) 3p 4P1/2 3 1 –0.912676 0.929278 6.981652 21750.39

1s22s22p2 (3P) 3p 4P3/2 3 1 –0.913745 0.928410 6.981652 21732.01

1s22s22p2 (3P) 3p 4P5/2 3 1 –0.915981 0.926594 6.981652 21693,55

1s22s22p2 (3P) 3p 4D1/2 3 1 –0.939026 0.932288 6.799479 22454.82

1s22s22p2 (3P) 3p 4D3/2 3 1 –0.940279 0.931251 6.799479 22432.21

1s22s22p2 (3P) 3p 4D5/2 3 1 –0.942354 0.929538 6.799479 22394.81

1s22s22p2 (3P) 3p 4D7/2 3 1 –0.945180 0.927205 6.799479 22343.88

1s22s22p2 (3P) 4p 4P1/2 4 1 –0.831999 0.967985 15.450882 10245.22

1s22s22p2 (3P) 4p 4P3/2 4 1 –0.834758 0.966408 15.450882 10229.66

1s22s22p2 (3P) 4p 4P5/2 4 1 –0.842043 0.962247 15.450882 10188.63

1s22s22p2 (3P) 4d 4P1/2 4 2 –0.082247 0.980658 20.624307 6075.686

1s22s22p2 (3P) 4d 4P3/2 4 2 –0.072636 0.958013 20.624307 6902.979

1s22s22p2 (3P) 4d 4P5/2 4 2 –0.064638 0.988644 20.624307 6925.726

1s22s22p2 (3P) 4d 4D1/2 4 2 –0.016580 0.994498 20.958065 6839.905

1s22s22p2 (3P) 4d 4D3/2 4 2 –0.020060 0.992927 20.958065 6830.237

1s22s22p2 (3P) 4d 4D5/2 4 2 –0.022182 0.991969 20.958065 6824.344

1s22s22p2 (3P) 4d 4D7/2 4 2 –0.022850 0.991666 20.958065 6822.48

1s22s22p2 (3P) 5d 4D1/2 5 2 –0.060172 0.980250 34.431473 4321.20

1s22s22p2 (3P) 5d 4D3/2 5 2 –0.063395 0.979092 34.431473 4316.62

1s22s22p2 (3P) 5d 4D5/2 5 2 –0.064489 0.978698 34.431473 4315.07

1s22s22p2 (3P) 5d 4D7/2 5 2 –0.064805 0.978585 34.431473 4314.62

1s22s22p2 (3P) 5d 4F3/2 5 2 –0.046656 0.999235 33.944920 4465.73

1s22s22p2 (3P) 5d 4F5/2 5 2 –0.046901 0.999146 33.944920 4465.375

1s22s22p2 (3P) 5d 4F7/2 5 2 –0.072491 0.989812 33.944920 4427.975

1s22s22p2 (3P) 5d 4F9/2 5 2 –0.011620 0.973958 33.944920 4364.352

1s22s22p2 (3P) 5d 4P1/2 5 2 –0.036108 0.988919 34.027040 4355.43

1s22s22p2 (3P) 5d 4P3/2 5 2 –0.013499 0.997094 34.027040 4387.68

1s22s22p2 (3P) 5d 4P5/2 5 2 –0.004011 1.000534 34.027040 4401.24

The NIST is a database of accepted values and collect ac-
cepted data from the original sources where original data
obtained from theoretical and/or experimental works. So,
the NIST contains recommended values for many transi-
tions taken from original sources as well. The values col-
lected by NIST database are known to be the best avail-
able data at that time. Our data presented in comparison
with accepted NIST data followed by its accuracy rating in
fifth column of Table 2. It has been seen from Table 2 that
the data calculated in this work presents a good agreement
with the accepted values within given their uncertainty
rates.

Zheng et al. have used the WBEPM theory for the de-
termination of some important physical parameters such
as energy levels, ionization potentials, transition proba-
bilities, oscillator strengths and lifetimes. They have pre-
ferred Numerical Coulomb Approximation (NCA) for the
expectation values of radius which is used in determina-
tion of relevant parameters. In the NCA method, for the
ground state and some excited states, the deviation be-
tween real expectation values and values calculated from
NCA method is very large [13,19,31]. In our paper, we
have used the HF96 computer program [28] based on the
numerical non-relativistic wave functions instead of NCA
method which is commonly employed in the studies using
WBEPMT in the literature for expected values of radius.

We have obtained very good agreement between our
results and the accepted values taken from NIST.

The Configuration Interaction (CI) and MCHF meth-
ods are powerful methods taken into account the rela-
tivistic and correlation effects. In the CI approximation
many configurations are required to obtain more accu-
rate results, especially more configurations must be con-
sidered for the excited states of many-electron systems
and it causes the calculation become very complicated.
In the MCHF approximations, atomic wave functions are
obtained using many basis-set orbital functions. The reli-
ability and accuracy of the results depend on the number
of the basis-set orbital functions chosen. It is difficult to
deal with many configuration and orbital basis set func-
tions and not practicable in calculations. The study of
highly excited states and highly ionized states of atoms
using well-known ab-initio methods are also very difficult.
Therefore, theoretical works in the literature have been
limited to the lower excited levels. For example, CI and
MCHF results contain data only for the transitions up to
4s and 3d levels. In atomic nitrogen, there are five elec-
trons apart from the 1s2 core electron. It is not easy to
deal with high lying levels excited of these multi-electron
systems using well-known standard methods. In this work,
we have obtained the transition probabilities between in-
dividuals lines of atomic nitrogen in the higher excited
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Table 2. Atomic transition probabilities and comparison with the accepted values taken from NIST for nitrogen.

Transitions This work Accepted values Accuracy∗

(×108 sn−1) (Ref. [32]) (Ref. [32])

1s22s22p2 (3P) 3p 4P1/2 → 1s22s22p2(3P) 4d 4P1/2 0.00210 0.00195 D+

1s22s22p2 (3P) 3p 4P3/2 → 1s22s22p2(3P) 4d 4P1/2 0.00960 0.00973 D+

1s22s22p2 (3P) 3p 4P1/2 → 1s22s22p2(3P) 4d 4P3/2 0.00488 0.00485 D+

1s22s22p2 (3P) 3p 4P3/2 → 1s22s22p2(3P) 4d 4P3/2 0.00155 0.00155 D+

1s22s22p2 (3P) 3p 4P3/2 → 1s22s22p2(3P) 4d 4P5/2 0.00350 0.00347 D+

1s22s22p2 (3P) 3p 4P5/2 → 1s22s22p2(3P) 4d 4P3/2 0.00517 0.00518 D+

1s22s22p2 (3P) 3p 4P5/2 → 1s22s22p2(3P) 4d 4P5/2 0.00806 0.00802 D+

1s22s22p2 (3P) 3p 4D1/2 → 1s22s22p2(3P) 4d 4D1/2 0.00628 0.00789 C

1s22s22p2 (3P) 3p 4D1/2 → 1s22s22p2(3P) 4d 4D3/2 0.00314 0.00395 C

1s22s22p2 (3P) 3p 4D3/2 → 1s22s22p2(3P) 4d 4D5/2 0.00321 0.00368 C

1s22s22p2 (3P) 3p 4D3/2 → 1s22s22p2(3P) 4d 4D3/2 0.00510 0.00630 C

1s22s22p2 (3P) 3p 4D3/2 → 1s22s22p2(3P) 4d 4D1/2 0.00673 0.00786 C

1s22s22p2 (3P) 3p 4D5/2 → 1s22s22p2(3P) 4d 4D7/2 0.00200 0.00223 C

1s22s22p2 (3P) 3p 4D5/2 → 1s22s22p2(3P) 4d 4D5/2 0.00780 0.00897 C

1s22s22p2 (3P) 3p 4D5/2 → 1s22s22p2(3P) 4d 4D3/2 0.00483 0.00547 C

1s22s22p2 (3P) 3p 4D7/2 → 1s22s22p2(3P) 4d 4D7/2 0.0110 0.0133 C

1s22s22p2 (3P) 3p 4D7/2 → 1s22s22p2(3P) 4d 4D5/2 0.00241 0.00294 C

1s22s22p2 (3P) 3p 4P1/2 → 1s22s22p2(3P) 5d 4D3/2 0.0042 0.0044 C

1s22s22p2 (3P) 3p 4P1/2 → 1s22s22p2(3P) 5d 4D1/2 0.00830 0.00894 C

1s22s22p2 (3P) 3p 4P3/2 → 1s22s22p2(3P) 5d 4D5/2 0.00700 0.00749 C

1s22s22p2 (3P) 3p 4P3/2 → 1s22s22p2(3P) 5d 4D3/2 0.0052 0.0057 C

1s22s22p2 (3P) 3p 4P3/2 → 1s22s22p2(3P) 5d 4D1/2 0.00168 0.00178 C

1s22s22p2 (3P) 3p 4P5/2 → 1s22s22p2(3P) 5d 4D7/2 0.0099 0.0106 C

1s22s22p2 (3P) 3p 4P5/2 → 1s22s22p2(3P) 5d 4D5/2 0.00300 0.00319 C

1s22s22p2 (3P) 3p 4P5/2 → 1s22s22p2(3P) 5d 4D3/2 0.000500 0.000531 C

1s22s22p2 (3P) 3p 4D7/2 → 1s22s22p2(3P) 5d 4F9/2 0.0138 0.0142 C

1s22s22p2 (3P) 3p 4D5/2 → 1s22s22p2(3P) 5d 4F7/2 0.0126 0.0121 C

1s22s22p2 (3P) 3p 4D1/2 → 1s22s22p2(3P) 5d 4F3/2 0.0109 0.00994 C

1s22s22p2 (3P) 3p 4D3/2 → 1s22s22p2(3P) 5d 4F5/2 0.0110 0.0106 C

1s22s22p2 (3P) 3p 4D3/2 → 1s22s22p2(3P) 5d 4F3/2 0.0043 0.0039 C

1s22s22p2 (3P) 3p 4D5/2 → 1s22s22p2(3P) 5d 4F5/2 0.00360 0.00342 C

1s22s22p2 (3P) 3p 4D5/2 → 1s22s22p2(3P) 5d 4F3/2 0.000300 0.000281 D+

1s22s22p2 (3P) 3p 4D7/2 → 1s22s22p2(3P) 5d 4F7/2 0.00206 0.00200 C

1s22s22p2 (3P) 3p 4D7/2 → 1s22s22p2(3P) 5d 4F5/2 0.000143 0.000135 D+

1s22s22p2 (3P) 3p 4D1/2 → 1s22s22p2(3P) 5d 4D1/2 0.00236 0.00257 C

1s22s22p2 (3P) 3p 4D1/2 → 1s22s22p2(3P) 5d 4D3/2 0.00117 0.00129 C

1s22s22p2 (3P) 3p 4D3/2 → 1s22s22p2(3P) 5d 4D3/2 0.00187 0.00205 C

1s22s22p2 (3P) 3p 4D3/2 → 1s22s22p2(3P) 5d 4D1/2 0.00234 0.00256 C

1s22s22p2 (3P) 3p 4D3/2 → 1s22s22p2(3P) 5d 4D5 /2 0.00108 0.00120 C

1s22s22p2 (3P) 3p 4D5/2 → 1s22s22p2(3P) 5d 4D7/2 0.000650 0.000726 C

1s22s22p2 (3P) 3p 4D5/2 → 1s22s22p2(3P) 5d 4D5/2 0.00265 0.00292 C

1s22s22p2 (3P) 3p 4D5/2 → 1s22s22p2(3P) 5d 4D3/2 0.00161 0.00178 C

1s22s22p2 (3P) 3p 4D7/2 → 1s22s22p2(3P) 5d 4D7/2 0.00388 0.00433 C

1s22s22p2 (3P) 3p 4D7/2 → 1s22s22p2(3P) 5d 4D5/2 0.000864 0.000959 C

1s22s22p2 (3P) 4p 4P1/2 → 1s22s22p2(3P) 5d 4P1/2 0.000596 0.000601 D+

1s22s22p2 (3P) 4p 4P3/2 → 1s22s22p2(3P) 5d 4P1/2 0.00294 0.00298 D+

1s22s22p2 (3P) 4p 4P1/2 → 1s22s22p2(3P) 5d 4P3/2 0.00149 0.00148 D+

1s22s22p2 (3P) 4p 4P3/2 → 1s22s22p2(3P) 5d 4P3/2 0.000470 0.000469 D+

1s22s22p2 (3P) 4p 4P3/2 → 1s22s22p2(3P) 5d 4P5/2 0.00105 0.00105 D+

1s22s22p2 (3P) 4p 4P5/2 → 1s22s22p2(3P) 5d 4P3/2 0.00153 0.00155 D+

1s22s22p2 (3P) 4p 4P5/2 → 1s22s22p2(3P) 5d 4P5/2 0.00238 0.00239 D+
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Table 2. Continued.

Transitions This work Accepted values Accuracy∗

(×108 sn−1) (Ref. [32]) (Ref. [32])

1s22s22p2 (3P) 3p 4P1/2 → 1s22s22p2(3P) 4d 4D1/2 0.0230 0.0299 C

1s22s22p2 (3P) 3p 4P1/2 → 1s22s22p2(3P) 4d 4D3/2 0.0115 0.0150 C

1s22s22p2 (3P) 3p 4P3/2 → 1s22s22p2(3P) 4d 4D5/2 0.0191 0.0251 C

1s22s22p2 (3P) 3p 4P3/2 → 1s22s22p2(3P) 4d 4D3/2 0.0146 0.0191 C

1s22s22p2 (3P) 3p 4P3/2 → 1s22s22p2(3P) 4d 4D1/2 0.00457 0.00596 C

1s22s22p2 (3P) 3p 4P5/2 → 1s22s22p2(3P) 4d 4D7/2 0.00270 0.00356 C

1s22s22p2 (3P) 3p 4P5/2 → 1s22s22p2(3P) 4d 4D5/2 0.0081 0.0107 C

1s22s22p2 (3P) 3p 4P5/2 → 1s22s22p2(3P) 4d 4D3/2 0.00135 0.00178 C
∗ estimated accuracy rates: C ≤ 25% , D + ≤ 40%.

levels using WBEPM theory through a more simple pro-
cedure. Accuracy and reliability of the results calculated
using this theory strongly depend on the accuracy and re-
liability of the expectation values of radius which is used
in determination of Z∗, n∗ and l∗ parameters. The values
of the transition probabilities will be better if the expec-
tation value of radius belonging to the levels is accurate
enough. We have concluded that results obtained using
the expectation values of the radius calculated by non-
relativistic numerical Hartree-Fock wave functions for the
relevant transitions in atomic nitrogen provides values in
much better agreement with the results taken from NIST.
The method used in this work requires quite shorter time
than other methods need for the computation procedure.
By courtesy of this method, the calculations for transition
probabilities belong to either low lying or highly excited
levels can easily and in a shorter time, be performed. In
addition, for highly excited states, this method is also ef-
fective than other theoretical methods.

The authors gratefully acknowledge for the financial support
of the Selçuk University Scientific Research Projects (BAP)
Coordinating Office.
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